

Chart Types

Chart Types

Chart Types

Table of Contents

1. Chart Type Anatomy 101 1-14

1.1. Gauge Types 14-18

1.2. Micro Charts 18-23

1.3. Organizational Charts 23-28

1.4. Financial Charts 28-29

1.5. ErrorBars and other SubValues 29-31

1.6. Element Markers 31-33

1.7. Element Layout Control 33-34

1.7.1. Elements And Axis Scales 34-35

1.7.2. Element Layout Control Advanced 35-38

Chart Types

Chart Types

Introduction

Chart types are constructed using several settings. Among them, the most significant are:

 Chart Type

 Series Type

 Axis Scale

 GaugeType

These properties work in concert to provide unprecedented flexibility.

Chart Types

The most fundamental property, Chart.Type, determines the generic layout of series and in the case of
pie, and radar, a type of chart. Axis scales further contribute to how elements are laid out, i.e. (Stacked).
The series type determines how the series are drawn (line, bar, etc.).

[C#]
Chart.Type = ChartType.Radar;

[Visual Basic]
Chart.Type = ChartType.Radar

Combo

ComboHorizontal

1 Chart Type Anatomy 101

Combo Chart Type

This chart type supports all the series types. It is vertically oriented
so the y axis (value axis) can only contain numeric or time values
while the x axis can also contain names of elements (category axis).

Supported Series Types

 All

 Element values (properties) used on the (Y Axis).

 YValue

 YValueStart

 YDateTime

 YDateTimeStart

 BubbleSize

 Complete

 (Financial: Open Close High Low)

 Element values used on the (X Axis).

 XValue

 XDateTime

 Name

Chart Types

1 Chart Types

ComboSideBySide

ComboHorizontal Chart Type

This chart types is horizontally oriented so the x axis can only contain
numeric or time values. It is the same as the Combo type except it's
oriented horizontally.

Supported Series Types

 All (New in version 3.4)

Notice the X and Y properties are switched
 Element values used on the (Y Axis).

 XValue

 XDateTime

 Name

 Element values used on the (X Axis).

 YValue

 YValueStart

 YDateTime

 YDateTimeStart

 BubbleSize

 Complete

 Element.Parent (Gantt Dependencies)

 Element.InstanceID (Gantt Dependencies)

 Element.ParentID (Gantt Dependencies)

 (Financial: Open Close High Low)

Notice that the axes element values are reversed for this chart
type, meaning the element XValue actually goes on the Y axis.
The reason for this is so that if you change between vertical and
horizontal chart types, the result will be the same.

ComboSideBySide Chart Type

This chart type is similar to combo but series are placed side by side
and the x axis tick labels show series names instead of element
names. This layout can be achieved in a normal combo chart by
transposing the data.

Supported Series Types

 All

Chart Types

2 Chart Types

Pie & Donut

 Element values used on the (Y Axis).

 YValue

 YValueStart

 YDateTime

 YDateTimeStart

 BubbleSize

 Complete

 (Financial: Open Close High Low)

 Element values used on the (X Axis).

 None (Series.Name us used)

Notes

 SideBySide does not support unclustered columns.

Pie Chart Type

Shows a single pie consisting of all the series added to the chart
where each slice represents a series.

Supported Series Types

 N/A

 Element values used on the (Y Axis).

 YValue

 Element values used on the (X Axis).

 N/A

 Related properties:

 Element.ForceMarker

 Element.ExplodeSlice

 Chart.PieLabelMode

 Chart.ExplodedSliceAmount

 Chart.DonutHoleSize (Donut Only)

 Chart.XAxis.OrientationAngle

Notice that the series are slices when using this chart type,
hence, if only a single series is used, the chart will have a single
100% slice. To see each element use the plural ChartType.Pies.

Chart Types

3 Chart Types

PiesNested

Radar

PiesNested Chart Type

Shows a series of nested pies.

Scale.Stacked
The width of each ring can also reflect the series total values when
Chart.YAxis.Scale = Scale.Stacked is used. Alternatively
Series.DefaultElement.BubbleSize can be used to specify ring widths
and will be applied when these properties are set.

Scale.Normal
When Scale.Normal is used, the pies are not stacked, the ring width
of each pie is measured from the middle point of the pies. This means
that if two series have the same ring width, one will completely cover
the other.

Supported Series Types

 N/A

 Element values used on the (Y Axis).

 YValue

 Series.DefaultElement.BubbleSize (Control ring widths).

 Element values used on the (X Axis).

 N/A

 Related properties:

 Element.ForceMarker

 Chart.SpacingPercentageNested

 Chart.PieLabelMode

In this mode, SpacingPercentageNested is not applicable.

Radar Chart Type

Draws all series on a single radar. Both x and y axes are used. The x
axis surrounds the radar and the y axis goes from the center to the
outside.

Supported Series Types

 Marker

 Line

Using this type will force each series to share a single x axis.

Chart Types

4 Chart Types

MultipleGrouped

 AreaLine

 Bubble

 Column

 Element values used on the (Y Axis).

 YValue

 YValueStart

 YDateTime

 YDateTimeStart

 BubbleSize

 Element values used on the (X Axis).

 Name

 XValue

 XDateTime

 Related properties:

 Chart.RadarLabelMode

 Axis.RadarMode

 Chart.XAxis.OrientationAngle

Polar Charts
The radar chart can support standard spider and polar axes. If the x
axis uses a category scale, the default will be a spider axis
(resembling a spider web). If the axis uses a numeric or time axis, the
type will default to Polar. The type can also be specified explicitly
using:
[C#]
Chart.XAxis.RadarMode = RadarMode.Polar;

[Visual Basic]
Chart.XAxis.RadarMode = RadarMode.Polar

Lines on polar charts will appear as curves. This is a feature
which helps determine the actual values of lines along along the
width of the lines.

MultipleGrouped Chart Type

Draws all series as elements of a single object such as types specified
by SeriesTypeMultiple.

Supported Series Types (SeriesTypeMultiple)

 FunnelCone

 FunnelPyramid

 Pyramid

 Cone

Chart Types

5 Chart Types

Gauges

Donuts

 Pie

 Donut

 Gauge

 StackedBubble (Uses Element.YValue, not Element.BubbleSize)

 Element values used on the (Y Axis).

 YValue

 Related properties:

 Chart.FunnelNozzlePercentage

 Chart.FunnelNozzleWidthPercentage

 Chart.SpacingPercentage

 Chart.BubbleStackShadeAsOne

 Chart.BubbleCenterStack

Gauges Chart Type

Shows each series as a gauge. Each can be a different GaugeType.

Please refer to the Gauges Tutorial (Section 1.1) for detailed
documentation.

Donuts Chart Type

The series are laid out in a way that allows for the maximum space
usage. One donut for each series.

Supported Series Types

 N/A

 Element values used on the (Y Axis).

 YValue

 Height (2D Only)

 Element values used on the (X Axis).

 N/A

 Related properties:

 Element.ForceMarker

 Element.ExplodeSlice

Chart Types

6 Chart Types

Radars

 Chart.PieLabelMode

 Chart.ExplodedSliceAmount

 Chart.DonutHoleSize

 Chart.XAxis.OrientationAngle

 Element.Outline

Radars Chart Type

Shows a radar for each series in the chart.

Supported Series Types

 Marker

 Line

 AreaLine

 Bubble

 Column

 Element values used on the (Y Axis).

 YValue

 YValueStart

 YDateTime

 YDateTimeStart

 BubbleSize

 Element values used on the (X Axis).

 Name

 XValue

 XDateTime

 Related properties:

 Chart.RadarLabelMode

 Axis.RadarMode

 Chart.XAxis.OrientationAngle

Polar Charts
The radar chart can support standard spider and polar axes. If the x
axis uses a category scale, the default will be a spider axis
(resembling a spider web). If the axis uses a numeric or time axis, the
type will default to Polar. The type can also be specified explicitly
using:
[C#]
Chart.XAxis.RadarMode = RadarMode.Polar;

[Visual Basic]
Chart.XAxis.RadarMode = RadarMode.Polar

Chart Types

7 Chart Types

Multiple

Pies

Lines on polar charts will appear as curves. This is a feature
which helps determine the actual values of lines along along the
width of the lines.

Multiple Chart Type

Draws all series as individual objects. Different types are supported
and can be specified by SeriesTypeMultiple for each series
simultaneously. The benefit of this chart type is that it allows using
different types such as pies, gauges, and the multiple types all on the
same chart.

Supported Series Types (SeriesTypeMultiple)

 FunnelCone

 FunnelPyramid

 Pyramid

 Cone

 Pie

 Donut

 Gauge

 StackedBubble (Uses Element.YValue, not Element.BubbleSize)

 Element values used on the (Y Axis).

 YValue

 Related properties:

 Chart.FunnelNozzlePercentage

 Chart.FunnelNozzleWidthPercentage

 Chart.StackedSpacingPercentage

 Chart.BubbleStackShadeAsOne

 Chart.BubbleCenterStack

Pies Chart Type

Shows a single pie for each series in the chart.

Supported Series Types

 N/A

 Element values used on the (Y Axis).

 YValue

 Height (2D Only)

 Length

Chart Types

8 Chart Types

Organizational

 Element values used on the (X Axis).

 N/A

 Related properties:

 Element.ForceMarker

 Element.ExplodeSlice

 Chart.PieLabelMode

 Chart.ExplodedSliceAmount

 Chart.XAxis.OrientationAngle

 Element.Outline

Organizational Chart Type

Shows an organizational chart based on the elements in the charts
series collection.

Only Element annotations are used with this chart type. Annotation
text can be specified but if left unpopulated, the element name text
will be used inside the annotations.

An organizational chart has a single element at the top with no
parent. Every other element will have either ParentID or Parent
property set to indicate which other element it is under. All elements
can be in a single series, however, the Series.Line property is used to
draw connections between elements so multiple series can be used to
group elements that use the same connecting line style.

Elements with no names or annotation text can be used to create
more complex layouts by drawing a straight line through the location
of the element as demonstrated in sample Gallery/M10

This type is explained in more detail in the Organizational Chart
Tutorial (Section 1.3).

Supported Series Types

 N/A

 Element values used on the (Y Axis).

 N/A

 Element values used on the (X Axis).

 N/A

 Related properties:

 Element.Annotation

 Element.Parent

 Element.InstanceID

Chart Types

9 Chart Types

Series Types

The next major contributor to chart types is the series type. The above chart type list includes a section on
supported series types for each. Different series types can be specified for each series simultaneously using
the following chart types:

 Combo

 ComboSideBySide

 ComboHorizontal

 Radar(s)

 Multiple

 MultipleGrouped

This allows you to create virtually unlimited number of different chart types.

SeriesType enumeration

[C#]
mySeries.Type = SeriesType.Line;

[Visual Basic]
mySeries.Type = SeriesType.Line

 Marker

 In 3D markers have no depth

 Related Properties

 Element.Marker

 Element.YValue

 Element.YDateTime

 Series/Element.LegendEntry.Marker

 Line

 Supported in 2D and 3D.

 Each element can have a different color along the same line series.

 In 2D elements will automatically show element markers.

 Line caps can be applied to 2D lines through the Series.Line line cap properties.

 Related Properties

 Element.ParentID

 Series.Line

Other chart types such as Bubble, Scatter, and Gantt are obsolete but available for legacy
support. They default to Combo, Combo, and ComboHorizontal respectively and set other properties
to resemble the legacy results.

ChartType.Financial is also obsolete and unnecessary. It is provided only for backward compatibility
as well.

Chart Types

10 Chart Types

 Series.Line (2D)

 Element.YValue

 Element.YDateTime

 Element.Marker

 Spline

 Supported in 2D and 3D.

 Each element can have a different color along the same spline series.

 In 2D elements will automatically show element markers.

 Line caps can be applied to 2D splines through the Series.Line line cap properties.

 Related Properties

 Series.Line (2D)

 Element.YValue

 Element.YDateTime

 Series.SplineTensionPercent

 Element.Marker

 AreaLine

 Supported in 2D and 3D.

 Each element can have a different color along the same line series.

 In 2D elements will automatically show element markers.

 Supports Stacked Axis Scales.

 Related Properties

 Series.Line (2D)

 Element.YValue

 Element.YDateTime

 Element.YValueStart

 Element.YDateTime

 Element.Marker

 AreaSpline

 Supports Stacked Axis Scales.

 Related Properties

 Series.Line (2D)

 Element.YValue

 Element.YDateTime

 Element.YValueStart

 Element.YDateTime

 Element.Marker

Chart Types

11 Chart Types

 Column & Bar

 Supports Stacked Axis Scales.

 Supports shading effects.

 Supports Element.Outline

 Supports Element.Complete indicator which is useful with Gantt charts.

 With ComboHorizontal, gantt dependencies can be used and are defined the same way as
organizational chart relationships.

 Cylinder

 Supports Stacked Axis Scales.

 Supports Element.Outline

 Supports 2D and 3D

 Cone

 Supports Stacked Axis Scales.

 Supports Element.Outline

 Pyramid

 Supports Stacked Axis Scales.

 Supports Element.Outline

 Bubble

 Requires Element.BubbleSize values.

 Supports shading effects.

 Supports Element.Outline

 Related Properties

 Element.BubbleSize

 Chart.MaximumBubbleSize

 BubbleShape

 Requires Element.BubbleSize values.

 Supports ShadingEffectMode.One

 Supports 2D and 3D views.

 Supports Element.Outline

 Related Properties

 Element.ShapeType

 Chart.MaximumBubbleSize

 LegendEntry.ShapeType

 ShapeType Enumeration

Chart Types

12 Chart Types

SeriesTypeFinancial enumeration

[C#]
mySeries.Type = SeriesTypeFinancial.CandleStick;

[Visual Basic]
mySeries.Type = SeriesTypeFinancial.CandleStick

 CandleStick

 Element values used

 Open or YValueStart

 Close or YValue

 High

 Low

 Complete

 Supports column shading.

 Bar

 When a open value is not provided this bar will be an HLC bar, if provided it will be a OHLC.

 Open

 Close

 High

 Low

 HighLowArea

SeriesTypeMultiple enumeration

 FunnelCone

 Related Properties

 Chart.FunnelNozzlePercentage

 Chart.FunnelNozzleWidthPercentage

 Chart.SpacingPercentage

 FunnelPyramid

 Related Properties

 Chart.FunnelNozzlePercentage

 Chart.FunnelNozzleWidthPercentage

 Chart.FunnelSpacingPercentage

 Cone

 Pyramid

 Pie

 Gauge

 StackedBubble

 Related Properties

Chart Types

13 Chart Types

 Chart.BubbleCenterStack

 Chart.BubbleStackShadeAsOne

This series type (SeriesTypeMultiple) applies to charts using ChartType.Multiple & ChartType.MultipleGrouped.

Axis Scales

Further customization is achieved by specifying an axis scale. Besides controlling the quantitative scale
type, scales also dictate how series behave. For example an axis scale can specify that columns are stacked.

See also: Element Values & Axis Scales (Section 1.7.1) | Element Layout and Axes (Section 1.7) | Z Axis
effect (Section 1.7.2)

Conclusion

As you can see, the final chart type is fundamentally based on three settings. This mix and match concept
may be more complicated than a single property, however, the flexibility it provides makes it well worth
understanding.

Introduction
A number of different gauge types are available within the gauge series type and can be specified by the
Series.GaugeType property. Each series on a gauge chart can use a different gauge type setting.

Automatic Padding Feature
Generally many of these gauge types are used by themselves without a legend or other features. When the
chart detects that the legend is not visible and the chart area is not drawn (by using ChartArea.ClearColors
()), it will automatically get rid of additional padding around the gauge.

Manual Sizing and Positioning (New in v4.4)
A static size can be applied to any gauge series by using the series.GaugeBorderBox.Position property and
specifying a Size object.

This feature also allows absolute positioning of each gauge when a Rectangle object is used instead.

1.1 Gauge Types

[C#]
mySeries.GaugeType = GaugeType.Circular;

[Visual Basic]
mySeries.GaugeType = GaugeType.Circular

Gauges can also be used with ChartType.Multiple and ChartType.MultipleGrouped when Series.Type =
SeriesTypeMultiple.Gauges.

[C#]
mySeries.GaugeBorderBox.Position = new Size(100,100);

[Visual Basic]
mySeries.GaugeBorderBox.Position = new Size(100,100)

[C#]
mySeries.GaugeBorderBox.Position = new Rectangle(20,20,100,100);

[Visual Basic]
mySeries.GaugeBorderBox.Position = new Rectangle(20,20,100,100)

Circular gauges height must be the same as their width, therefore, only the specified Width is used

Chart Types

14 Chart Types

QuickStart Illustration
The following illustration shows which properties control certain aspects of gauge types.

Gauge type options (Series.GaugeType)

Circular
The circular type is the default gauge type used.

Custom Image Needles
This type also supports using custom images as needles along with the DynamicColor feature of
ElementMarkers. For more information on using custom needles, see the Element Markers (Section 1.6).

Supported Features

 All axis scale types except for stacked scales.

 Supports axis markers.

 Multiple needle types

 Multiple needles within a gauge

 An icon within the gauge using YAxis.LabelMarker

 Glass Shading when Chart.ClipGauges = false and Chart.Use3D = true

Related Properties

 YAxis.Line (border line properties)

 YAxis.LabelMarker

 YAxis.OrientationAngle

 YAxis.RangeAngle

 YAxis.SweepAngle

 Series.Background (background color)

 Series.NeedleType

 Series.GaugeBorderShape

 Series.GaugeBorderBox

 Chart.ClipGauges

 Chart.Use3D (effect when not clipped)

Bars
This gauge type can be useful displaying element values when an axis scale is not necessary.

Supported Features

 All axis scale types.

 Axis minimum/maximum settings

 All bar ShadingEffectModes.

with this feature.

Chart Types

15 Chart Types

 The XAxis Tick and Element's Label is used along side of the bars.

 The tick and element labels can be aligned to right, left, or center (element label only).

 Segmented Bar type when using Series.Type = SeriesType.BarSegmented

Related Properties

 Series.Background (background color)

 Series.GaugeBorderShape

 Series.GaugeBorderBox

 Series.Type (Bar or BarSegmented)

 Chart.ShadingEffectMode

Digital Readout
This gauge type can be used to display element values using a digital readout style.

Supported Features

 Digital readout font styles include Normal, Italic, Bold, and Bold Italic.

 The XAxis Tick Label is used along side of the readout.

 The axis tick and digital labels can be aligned to right or left.

Related Properties

 Series.Background (background color)

 Series.GaugeBorderShape

 Series.GaugeBorderBox

 Series.Type (Bar or BarSegmented)

 Element.SmartLabel.Font (Used to specify digital readout font style)

IndicatorLights
These indicator LEDs can be used to convey the status of an element. If the element's value is < 0, the
element's LED is grayed out, if the value is above zero, the element's color is used.

SmartPalette
Using smartPalettes with this type, the gray/colored feature based on value is deactivated. The smart
palette is used to determine the element's color instead.

The size of the LEDs on a particular chart can be specified with Chart.DefaultElement.Marker.Size,
however, by default the LED sizes are determined dynamically. The actual element markers however can be
drawn separately on top of the LEDs when Element.ForceMarker is true as shown in sample
Gallery/h018.aspx

Supported Features

 All bubble ShadingEffectModes.

 The XAxis Tick and Element's Label is used along side of the LEDs.

 The tick and element labels can be aligned to right, left, or center (element label only).

 Markers can be drawn on top of the LEDs.

Chart Types

16 Chart Types

Related Properties

 Series.Background (background color)

 Series.GaugeBorderShape

 Series.GaugeBorderBox

 Chart.ShadingEffectMode

 Chart.DefaultElement.Marker.Size

Horizontal & Vertical (Includes Thermometers)
The horizontal and vertical gauge types are linear bar gauges with the YAxis but no XAxis. The y axis applies
to both horizontal and vertical the same way, when the type is horizontal, the YAxis is the horizontal one
and with vertical, the YAxis is vertical.

Normal & Thermometer styles
To use the thermometer variation use the following setting:

Bar Widths
By default the element widths snap to the size of the gauge's mini chart area, however, the
XAxis.SpacingPercentage or XAxis.StaticColumnWidth settings will be used if specified.

Supported Features

 All axis scale types except for stacked scales.

 Multiple elements for bars and thermometers.

 Supports axis markers.

 Thermometer GaugeLinearStyle

 All bar shading effect modes for thermometers and bars.

 Supports Columns BarSegmented and Marker Series Types.
*Markers not available on thermometers.

 SubValues

 Virtually all axis features of combo types are available.

 ImageBarTemplate support

Related Properties

 YAxis.Line (border line properties)

 YAxis members

 Series.Background (background color)

 Series.GaugeBorderShape

 Series.GaugeLinearStyle

 Series.GaugeBorderBox

 Chart.XAxis.SpacingPercentage

 Chart.XAxis.StaticColumnWidth

[C#]
Chart.DefaultSeries.GaugeLinearStyle = GaugeLinearStyle.Thermometer;

[Visual Basic]
Chart.DefaultSeries.GaugeLinearStyle = GaugeLinearStyle.Thermometer

Chart Types

17 Chart Types

 Chart.ShadingEffectMode

Introduction

MicroCharts are miniature versions of actual charts, designed to help viewers understand complex
relationships between data in repetitive scenarios such as data grids or InfoGrids. MicroCharts are optimized
to use very little space and are ideal for data grids, info grids or use as parts of labels within charts.
MicroCharts are defined using a markup language inside the chart label text. This means that anywhere a
label is used, a microChart can easily be embedded. With the use of tokens, microCharts can be setup using
default properties and will automatically represent the label's parent objects token values. InfoGrids are
similar to traditional data grids but are generated entirely within chart labels. MicroCharts and InfoGrids
are two unique technologies that are ideally suited for each other; MicroCharts enrich InfoGrids with
concise data visualizations. Please see the tutorial on InfoGrids ('InfoGrids' in the on-line documentation)
for additional information on data grid and dashboard usage.

Basic Usage

To use a microChart in a label, use a syntax that starts with <Chart: then the type of microChart and other
options ending with a closing '>' character. Parameters must be specified using a format like
param='value' using single quotes around the value as shown below:

 MicroChart Types

Please see the Features > Gauge Type Tweaks section in samples for examples using gauge types.

1.2 Micro Charts

[C#]
Chart.TitleBox.Label.Text = "<Chart:Bar value='5' max='10'>";

[Visual Basic]
Chart.TitleBox.Label.Text = "<Chart:Bar value='5' max='10'>"

Each microChart type has a number of options available. Similar
types work alike but all share the same syntax.

 Bar
<Chart:Bar value='5' max='10'>
Draws a basic bar. Usually used with a max attribute so it lines
up with other bars in a grid format.

 BarGauge
<Chart:BarGauge value='5' max='10'>
This type is similar to Bar except a full width translucent
version of the bar is drawn underneath like GaugeType.Bars on
normal Charts.

 BarFull
<Chart:BarFull values='5,4,3' >
Values specified for this type are placed on a 100% stacked
axis.

 Column
<Chart:Column values='5,4,3' >
Creates a series of columns based on specified values. This
type is different (in appearance) than regular combo column
charts because it's optimized for small sizes and does not
support shading effects.

Chart Types

18 Chart Types

 WinLose
<Chart:WinLose values='1,1,1,1,-1,-1,-1'>
This type is similar to Column except it only takes values -
1,0,or 1 to represent a loss, tie, or win respectively. It is also
useful in showing the status of something like a server
functioning normally or being down over time.

 Progress
<Chart:Progress value='5' max='10'>
This type is similar to Bar except the bar is drawn in segments.

 ProgressGauge
<Chart:ProgressGauge value='5' max='10'>
This type is similar to BarGauge except the bar is drawn in
segments.

 Bullet
<Chart:Bullet values='20,18,8,13' max='25'>
The bullet type shows a value (bar) a target (vertical line
segment) and AxisMarker bands indicate additional target or
status.

 Sparkline
<Chart:Sparkline values='5,4,3' >
A sparkline is similar to a line chart but without the extras like
grid lines.

 Arealine
<Chart:AreaLine values='5,4,3' >
Similar to an AreaLine chart but without the extras like axes.

 Scale and ScaleB
<Chart:Scale min='0' max='100'>
The scale micro chart is designed to be used in a header of a
column that will show micro charts based on that scale range.
By specifying the same width for the scale and subsequent
charts, it will ensure the charts in that column line up with
each other and the scale. Using a scale also requires that the
same max parameter value is set for all the charts so the
values of each chart correspond to the values indicated by the
scale. In some cases, the min parameter may also be required.
ScaleB works the same as Scale, except it faces upward
instead of facing down like Scale does.

 Pie
<Chart:Pie values='5,4,3' >
Simple pie microChart

 Pie3D
<Chart:Pie3D values='5,4,3' >
Same as pie but uses the 3D effect.

 Marker
<Chart:Marker type='square' color='crimson'>
Draws any available ElementMarkerType. In addition, the circle
(default) marker type also supports bubble shading effects
when specified.

 Image
<Chart:Image src='image.png' rotate='45'>
Drawn the specified image. Options such as image rotation and
sizing are possible with this tag.

 Spacer
<Chart:Spacer size='230x15'>
Acts as a transparent placeholder or spacer. It is useful in a

Chart Types

19 Chart Types

Available Parameters

 Value
Used by micro charts that take a single value such as Bar, BarGauge, Progress, ProgressGauge

 Values
Specify multiple numeric values for the micro chart.

 Color
Specifies a color for micro charts that display a single value. For some cases it is used for a simpleColor
feature described in more detail below.

 Colors
Used to specify the colors used on the chart.

 Min / Max
Specifies the minimum and maximum scale values.

 Width / Height
Specifies the width and height of the micro chart in pixels.

 Size
Can be used to set the size easier than using width and height separately. Examples: size='100x20' or
size='20' (for pies or markers). Setting the size parameter with a single value applies it to both width
and height.

 Shading
Takes a number between 1 and 7 and specifies the shading effect mode to use on the micro chart.

 AxisMarker
Takes a single to draw a reference line or two values that specify a range to highlight similar to range
axis markers on regular charts. Sparkline, AreaLine, and Column support this feature.

 Type
Specifies the ElementMarkerType for use with a marker micro chart.

 Url
Specifies a clickable URL for the microchart.

 Tooltip
Specifies a tooltip that will appear when hovering over the micro chart.

 Src
Image source path. Used with Chart:Image type.

 Rotate
Specifies image rotation in degrees. Used with Chart:Image type.

Sizing MicroCharts

All microCharts have predefined default sizes. Types like Pie, Pie3D use 30x30 and Marker uses 20x20. All
other except for Column and WinLose use 100x20. The Column and WinLose types size automatically
depending on the number of values specified. This way stacking multiple column microCharts with different
number of elements will allow the columns to be the same width. Column types will also automatically left
align to support this. The column widths can be controled by specifying only the height parameter,
however, using both width and height or just width is also supported.

Shading MicroCharts

A number of micro charts support shading effect modes. These can be specified with the 'shading'
parameter which takes a number from 1 to 7 indicating the shading effect mode to use. The micro charts
that support shading are:

 Bar

number of scenarios to control layout.

A sample is available for each type of microChart demonstrating all the options available for those
given types. These samples are located in the gallery under Chart Types/MicroCharts.

Chart Types

20 Chart Types

 BarGauge

 Progress

 ProgressGauge

 BarFull

 Bullet

 Pie

 Marker - (With markers, only the default 'Circle' marker type supports shading)

Setting Axis Range

The scale micro chart provides a means to describe other horizontal based micro charts. When other micro
charts are stacked vertically with a scale in the header row then must sync the scales in order to visualize
the information correctly. The scale range can be specified through the Min and Max attributes. The default
value of the Min attribute is always 0. The following micro chart types support the min/max axis range
attributes:

 Bar

 BarGauge

 Progress

 ProgressGauge

 Bullet

 Scale

The scale can also be used with other microCharts in some situations. For example, if using SparkLines to
represent sales in january, a static scale with two labels: "Jan", "Feb" can be used to indicate the range
represented by the sparklines.

Values and Colors

While most parameters apply to every type of microChart in a similar fashion, the value(s) and color(s)
parameters vary depending on the type of microChart used. The following grid matrix explains how value
and color parameters are used with the corresponding type of microChart.

NOTE: While value and color parameters take a single string value, the values and colors parameters
(plural) accept a comma delimited list of the same values.

Type Value / Values Colors

Bar Value parameter indicates the bar value.

Color: Sets the bar color.

Colors:
1st color sets the bar
2nd color sets the background

BarGauge Value parameter indicates the bar value. Color: Sets the bar color.

Progress Value parameter indicates the bar value.

Color: Sets the bar color.

Colors:
1st color sets the bar
2nd color sets the background

ProgressGaugeValue parameter indicates the bar value. Color: Sets the bar color.

BarFull Values parameter is used to pass a comma
delimited list of values.

Colors: a list of colors for each bar.
Color: SimpleColor Feature

Bullet

Values: the sequence of values specify: Value,
Target, 1st, and 2nd axis marker positions.

If the 3rd value is larger than the 4th. The axis
marker colors fill in the opposite direction.

Colors:
1st Color: Bar
2nd Color: Target
3rd Color: Shade 1
4th Color: Shade 2
5th Color: Background

Chart Types

21 Chart Types

Using MicroCharts

Because micro charts can be used anywhere a label appears on a chart, there are an endless number of
possibilities, however, below are a number of scenarios in which microCharts can be especially useful.

Color: SimpleColor Feature

SparkLine Values parameter is used to pass a comma
delimited list of values.

Colors
1st Color: Line
2nd Color: Line ends
3rd Color: Max/Min
4th Color: AxisMarker

The word 'Transparent' can be used to omit
specifying a color in the colors array.

AreaLine Values parameter is used to pass a comma
delimited list of values.

Colors
1st Color: Line
2nd Color: Line ends
3rd Color: Max/Min
4th Color: AxisMarker

The word 'Transparent' can be used to omit
specifying a color in the colors array.

Scale & ScaleB

Value: sets the default axis tick label text. ex. '<%
Value,Currency>'

Values: a comma delimited list of string labels to
place on the axis. ex: 'Bad,Good,Great' Because
each value will be processed by the chart itself,
markup can be used as well such as including
images. This is demonstrated in the
MicroScaleOptions sample.

Color: Specifies the color for axis and
labels

Colors:
1st color: labels
2nd color: axis line

Pie Values parameter is used to pass a comma
delimited list of values.

Colors reflect element colors
Color: SimpleColor Feature

Pie3D
Values parameter is used to pass a comma
delimited list of values.

Colors reflect element colors
Color: SimpleColor Feature

Marker N/A Color: marker color.

Column Values parameter is used to pass a comma
delimited list of values.

Color: (+)columns

Colors:
1st: (+)columns
2nd: (-)columns
3rd: AxisMarker

WinLose
Values parameter is used to pass a comma
delimited list of values. The options are -1 = lose,
0 = tie, and 1 = win.

Color: (win)columns

Colors:
1st: (win)columns
2nd: (loss)columns
3rd: AxisMarker

SimpleColor Feature
By setting the color parameter for charts that support this feature, multiple colors will be created for
all elements based on the specified color. This can allow the ability to quickly apply a primary color of
your page to ensure the MicroCharts fit.

Chart Types

22 Chart Types

MicroChart Helpers

A number of tokens are available to help making microCharts easier. For example, the sample [Dashboards
And InfoGrids/ChartMicroSubValues] uses the element token %SubValueList which can be used in the
element label inside a microChart tag. Other useful tokens include:

Extending MicroChart functionality.

If the provided micro chart types do not meet the requirements of your project, custom micro charts can be
built from scratch and embedded into chart labels in a similar fashion. Sample: Features/Legend
Box/EmbeddedLegendCharts demonstrates this scenario. The sample inserts a Progress type MicroChart into
the legend box similar to sample ('LegendCharts' located in the same section), except, the code to
generates the indicator chart is stored in a separate file which can be modified.

Introduction

Organizational charts can be created using .netCHARTING by getting data from live databases or by adding
it manually in code. Organizational nodes can be decorated and styled in many ways by using the element
annotation properties. Using the label markup language; custom layout, images and other content can be
organized inside each node. Rich interactivity features are provided to enable organizational chart
drilldown, node expansion, and AJAX scrolling for large datasets. Other useful navigation features include
drilldown breadcrumbs and indicators to accent the node appearance.

About Organizational Charts

As with other charts, each node in an organizational chart is represented by an element object. The
element's annotation is used to define node styling and content. Annotation label text can be specified to
define the node content, but if not set, the element name will be shown inside the annotations.

An organizational chart has a single element at the top of the hierarchy. Every other element will have
either ParentID or Parent properties set to identify its parent element. All elements can be in a single
series, however, the Series.Line property is used to style the connections between elements so multiple
series can be used to group elements that use the same connecting line style.

Elements with no names or annotation labels can be used as invisible placeholders to create more complex
layouts. When used, a straight line is drawn through the location of the element as demonstrated in sample
Chart Type Gallery/Organizational/M10.

Data Acquisition

Scenario Example
In Labels on charts Code: Chart.TitleBox.Label.Text = "<Chart:Bar value='5' max='10'>";
In Element Labels Sample: Dashboards And InfoGrids/ChartMicroPie
On Axis Tick labels Sample: Dashboards And InfoGrids/ChartMicroAxis
In legend box entries Sample: Legend Box/LegendSparkLines
In Empty legend box headerLabel.Sample: Dashboards And InfoGrids/AnnotationInfoGrid1
Inside annotations Sample: Dashboards And InfoGrids/InfoGridMulti
By themselves as a chart control. Sample: Dashboards And InfoGrids/InfoGrid1
Inside asp.net DataGrid Sample: Dashboards And InfoGrids/DataGridDash

Type Tokens
Element %SubValueList - a comma delimited list of sub values.
Series %YValueList - a list of element y values

SeriesCollection
%YSeriesSumList - a list of of each series y value sum.
%YGroupSumList - a list of y value sums for each element group.
%ColorList - a list of colors used by the series in the collection.

1.3 Organizational Charts

Chart Types

23 Chart Types

To retrieve an organizational chart from a database table, each row must have an ID and a ParentID. This
shows an example of how an organizational chart gets its data. It also adds several attributes to each
element from other table columns such as Name, Office, Email, etc..

Custom attributes can be shown in the annotation (node) labels using tokens such as %Office %Email and so
on. If iterating the elements in code, attributes can be retrieved using code such as:

string value = element.CustomAttributes["office"];

For more information, see the Custom Attributes Tutorial ('Custom Data Attributes' in the on-line
documentation).

Adding Data Manually

When adding organizational elements manually, either the element InstanceParentID or Parent properties
must be set. The InstanceParentID property takes a numeric id matching the parent element's InstanceID
property. Alternatively, the parent element object can be specified for each child element's Parent
property.

This sample demonstrates adding nodes manually without IDs. It is useful because it makes adding data with
code easier.

The following code snippet creates the same chart but using InstanceID and InstanceParentID properties to
define the hirerarchy.

C#

DataEngine de = new DataEngine(ConfigurationSettings.AppSettings
["DNCConnectionString"]);
de.SqlStatement = @"SELECT * FROM Employees";
de.DataFields =
"InstanceID=ID,InstanceParentID=PID,Name=Name,office,Department,Email,Phone,Picture";
Chart.SeriesCollection.Add(de.GetSeries());

VB.NET

Dim de As New DataEngine(ConfigurationSettings.AppSettings("DNCConnectionString"))
de.SqlStatement = "SELECT * FROM Employees"
de.DataFields =
"InstanceID=ID,InstanceParentID=PID,Name=Name,office,Department,Email,Phone,Picture"
Chart.SeriesCollection.Add(de.GetSeries())

The attribute keys are case sensitive so if the above code does not work, use the debugger to evaluate
the key values of the element.CustomAttributes collection.

C#

Element p1 = new Element("Margret Swanson");
Element vp1 = new Element("Mark Hudson");
Element vp2 = new Element("Chris Lysek");
vp1.Parent = p1;
vp2.Parent = p1;
Series s = new Series("", p1, vp1, vp2);

VB.NET

Dim p1 As New Element("Margret Swanson")
Dim vp1 As New Element("Mark Hudson")
Dim vp2 As New Element("Chris Lysek")
vp1.Parent = p1
vp2.Parent = p1
Dim s As New Series("", p1, vp1, vp2)

C#

Chart Types

24 Chart Types

Element p1 = new Element("Margret Swanson");
Element vp1 = new Element("Mark Hudson");
Element vp2 = new Element("Chris Lysek");
p1.InstanceID = 1;
vp1.InstanceID = 2;
vp3.InstanceID = 3;
vp1.InstanceParentID = 1;
vp2.InstanceParentID = 1;
Series s = new Series("", p1, vp1, vp2);

VB.NET

Dim p1 As New Element("Margret Swanson")
Dim vp1 As New Element("Mark Hudson")
Dim vp2 As New Element("Chris Lysek")
p1.InstanceID = 1
vp1.InstanceID = 2
vp3.InstanceID = 3
vp1.InstanceParentID = 1
vp2.InstanceParentID = 1
Dim s As New Series("", p1, vp1, vp2)

Styling Organizational Charts

The chart area padding controls the spacing between nodes
and chart edges. The Chart.DefaultSeries.Line property can
be used to define the default connecting line styling
between nodes.

To specify a default annotation style, instantiate a new
annotation object for the Chart.DefaultElement.Annotation
property and modify those properties. They will
automatically be used by all the annotations on the chart,
unless otherwise specified.

Using the .netCHARTING markup language provides a way
to control the layout of the text and images inside the
annotations. The markup language tutorial ('Label Layout
Markup' in the on-line documentation) explains how to
use this markup. The text and markup can be specified
with the Annotation.Label.Text property.

Annotations have two content areas. When a string is set
with Annotation.HeaderLabel.Text, that content is placed
in a header which allows separate background styling.

See also:

 Annotations try to maintain a certain width to
height ratio by default which may result in odd
rectangles. However, setting
Annotation.DynamicSize = false will make the
annotation size based on the content.

 Annotations support a sizing option where only
the height or width is provided and the other
side sized automatically. This can be done by
specifying a size with a value of 0 for the side
that should size automatically:
For example: Annotation.Size = new Size(100,0)
Width will be 100 and the height will be
automatically determined.

Chart Types

25 Chart Types

This sample code demonstrates styling the default annotation of a chart:

Iterating elements to specify styling individually is done in the same way except element.Annotation would
be used for each object instead of Chart.DefaultElement.Annotation. However, the annotation must be
instantiated for each element before accessing its properties.

Organizational Chart Navigation

Organizational chart nodes can be fairly large and with many of them on a chart, it is difficult to view them
all at the same time. When a large number of nodes is loaded into a chart, the chart will try to render them
on a larger image and scale it down to fit the chart area. This can result in nodes showing up very small.

A number of methods and features are provided to facilitate navigating large and complex organizational
chars in a simple and intuitive way. This functionality is implemented with a lower level API that is more
flexible and allows creating highly customized navigation experiences.

ASP.NET AJAX Scrolling

The most easy to use feature to facilitate navigating large organizational charts, is by using the AJAX
Zoomer. Simply use Chart.Zoomer.Enabled = true to enable this feature. This feature behaves differently
with organizational charts. There are no context menu options for zooming in or out. It allows the entire set
to be loaded into a chart, and if it generates an image too large for the chart area, drag scrolling and
scrollbars become available.

Organizational Node DrillDown

This concept provides the ability to click on a node, and navigate into an organizational hierarchy subset
without displaying all the nodes at the same time. The Series.Trim method provides this ability, and works
by returning a subset of nodes based on the root ID of an element, and the number of subsequent levels of
child nodes to include in the result. Annotation hotspots are used with a URL to postback the ID of the
clicked annotation. Then the page must get this ID and pass it to the trim method in order to display the
correct subset of nodes.

Drilldown Breadcrumbs

Drilldown breadcrumbs provide a way to keep track of the location within an organizational hierarchy when
using drilldown features. Breadcrumbs are common and look something like this:

 Annotation Class - annotation properties and usage.

 Box Tutorial (Styling) ('Box Tutorial' in the on-line
documentation) - basics of box styling.

 Label Tutorial ('Using labels' in the on-line
documentation) - Token and attribute usage.

C#

Chart.DefaultElement.Annotation = new Annotation();
Chart.DefaultElement.Annotation.Padding = 5;
Chart.DefaultElement.Annotation.Size = new Size(75, 30);
Chart.DefaultElement.Annotation.Background.ShadingEffectMode =
ShadingEffectMode.Background2;

VB.NET

Chart.DefaultElement.Annotation = New Annotation()
Chart.DefaultElement.Annotation.Padding = 5
Chart.DefaultElement.Annotation.Size = New Size(75, 30)
Chart.DefaultElement.Annotation.Background.ShadingEffectMode =
ShadingEffectMode.Background2

Sample: Feature Gallery/Chart Type Tweaks/OrgExpansionDB uses this feature.

Sample: Feature Gallery/Chart Type Tweaks/OrgDrillDownDB demonstrates organizational drilldown
with a live database.

Chart Types

26 Chart Types

Animals / Feline / Cheetah

Samples such as OrgDrilldown demonstreate how to use this feature in a drilldown context. The sample
OrgBreadcrumbs uses this method to get an array of breadcrumb strings, and display them as annotations.

Consider the following code creating a breadcrumb path

string path = series.GetElementBreadcrumbs(elementID, elementCrumb, lastElementCrumb, separator);

The above usage specifies the elementID of the last element or 'Cheetah' in the above example. The
elementCrumb is a label template that can use element tokens such as %Name. This would be applied to
the underlined crumbs 'Animals' and 'Feline'. Common usage would require these nodes are linked. Using this
string as the elementCrumb template will create links for those crumbs:

string elementCrumb = "<block url='?id=%id' fColor='blue' fStyle='underline'>%Name";

The lastElementCrumb can be just the name with no links or styling to indicate it is not clickable:

string lastElementCrumb = "<block>%Name";

The separator also uses the block tag to terminate any block tags previously added by the elementCrumb
template.
string separator = " <block>/ ";

The resulting string can be added anywhere on the chart, like in the chart title box, chart area label, or in a
floating annotation amongst others.

Organizational Node Attributes

The Series.Trim method also analyzes the dataset and optionally populates element attributes that indicate
the level in the hierarchy and node type such as whether elements have parent or child nodes not shown in
the resulting subset of nodes.

Sample OrgLevels uses the trim method to not trim the nodes but just to analize the dataset and populate
organizational level attributes for each element. Then they are colored based on the hierarchical level.

This table describes the attributes added by the Trim method.

Organizational Indicators

The NodeType attributes can also be used to style the annotations by drawing an accent above or below the
node. For example, if the element's NodeType attribute value is 'RootWithParents', an accent is drawn
above the annotation, and if the value is 'EndNodeWithChildren', it is drawn it below it. This is
demonstrated in sample OrgIndicators where these attributes are set manually to display the accent, and in
sample OrgDBDrilldown where they are supplied by the trim method.

Organizational Node Expansion

This feature allows the user to click on any node to expand or collapse its children, thereby exploring the
hirerarchy while displaying only the expanded nodes. This is similar to drilldown, however, it requires that a
comma delimited list of expanded node IDs is maintained by the page code or application. Another overload
of the Trim method can take this list of IDs and return only the nodes that should be visible.

Attribute Name Values and Descriptions

NodeType

EndNodeWithChildren - Indicates this element's children are trimmed
from the result but child elements exist.
RootWithParents - Indicates it is the root element in the result but parent
nodes exist and were trimmed away.
Root - The root of the result and dataset.
NoChildren - Node has no children in the result or in the dataset.

OrganizationalLevel A number ranging from 1 to n levels in the data set indicating the level of
each particular element.

Sample: Feature Gallery/Chart Type Tweaks/OrgExpansionDB demonstrates implementing this feature
using a live database.

Chart Types

27 Chart Types

Combining Navigational Features

When using organizational expansion, it is useful to enable the AJAX zoomer so that when the expanded
nodes create a large image, scrolling is enabled to help navigate around (Sample: OrgExpansionDB).

Because organizational charts with many elements can result is huge images, making the nodes smaller with
less information can help fit much more of a hierarchy onto a chart. The additional information can be
displayed in a tooltip. With label markup support for tooltips, the same string and layout used for
annotations can be used in tooltips (Sample: OrgDBRichTooltips).

Financial charts may create some confusion, never the less, making them works on the same principal as
any other chart. There is, however, a difference in acquiring data.

Data Acquisition

First let's get data from a database which already has open, close, high, and low values using the
DataEngine. In order to populate OCHL (open, close, high, low) element properties the
DataEngine.GetFinancialSeries() method is used instead of GetSeris().

[C#]
DataEngine de = new DataEngine(myConnectionString);
de.QueryString = "SELECT timeCol ,openCol, closeCol, highCol, lowCol, timeCol FROM stockPrice";
de.DataFields = "open=openCol,close=closeCol,high=highCol,low=lowCol,xValue=timeCol";

SeriesCollection stockSC = de.GetFinancialSeries();
stockSC[0].Type = SeriesTypeFinancial.CandleStick;
Chart.SeriesCollection.Add(stockSC);

[Visual Basic]
Dim de As New DataEngine(myConnectionString)
de.QueryString = "SELECT timeCol ,openCol, closeCol, highCol, lowCol, timeCol FROM stockPrice"
de.DataFields = "open=openCol,close=closeCol,high=highCol,low=lowCol,xValue=timeCol"

Dim stockSC As SeriesCollection = de.GetFinancialSeries()
stockSC(0).Type = SeriesTypeFinancial.CandleStick
Chart.SeriesCollection.Add(stockSC)

For the next example, we'll get our data from a database that has only the price column where the entries
represent a price snapshot for every hour of the day over several months. We'll want to create the same
type of chart as the above but obviously the data is not formatted in this manner. Fortunately the
DataEngine is capable of grouping the data properly and calculating the high, low, open, and close prices.
The DataEngine will know that this is the result we're going for when we use GetDataFinancial() instead of
GetData().

[C#]
DataEngine de = new DataEngine(myConnectionString);
de.DateGrouping = TimeInterval.Days;
de.QueryString = "SELECT timeCol, price FROM stockPrice";

SeriesCollection stockSC = de.GetFinancialSeries();
stockSC.Type = SeriesTypeFinancial.CandleStick;
Chart.SeriesCollection.Add(stockSC);

[Visual Basic]
Dim de As New DataEngine(myConnectionString)
de.DateGrouping = TimeInterval.Days
de.QueryString = "SELECT timeCol, price FROM stockPrice"

Dim stockSC As SeriesCollection = de.GetFinancialSeries()
stockSC.Type = SeriesTypeFinancial.CandleStick

1.4 Financial Charts

Chart Types

28 Chart Types

Chart.SeriesCollection.Add(stockSC)

For more information on data acquisition, see: Data Tutorials (on-line documentation).

Setting up Charts

ChartType.Financial
Please note that this chart type should not be used. It is there for backward compatibility. Using this chart
type, a single series can be used where the element price properties are set as well as the volume value,
however, the functionality will be limited. Instead use ChartType.Combo. The following example will show
how to create the volume chart area using the newer more capable method.

[C#]
DataEngine de = new DataEngine(myConnectionString);
de.QueryString = "SELECT timeCol, volume, FROM stockVolume";
de.DateGrouping = TimeInterval.Day;
SeriesCollection volSC = de.GetData();
// Create a new chart area, add the volume data and add the area to the chart.
ChartArea vca = new ChartArea(volSC);
vca.HeightPercentage = 30;
Chart.ExtraChartAreas.Add(vca);

[Visual Basic]
Dim de As New DataEngine(myConnectionString)
de.QueryString = "SELECT timeCol, volume, FROM stockVolume"
de.DateGrouping = TimeInterval.Day
Dim volSC As SeriesCollection = de.GetData()
// Create a new chart area, add the volume data and add the area to the chart.
Dim vca As New ChartArea(volSC)
vca.HeightPercentage = 30
Chart.ExtraChartAreas.Add(vca)

For more information on using and manipulating ChartAreas, see: Multiple Chart Areas (on-line
documentation).

Introduction

.netCHARTING has an advanced system for handing error bars and other sub value types that are used in
many statistics charts. Element and series classes have properties that quickly set sub values, however,
there is a more powerful system underneath that controls and helps manage these sub elements.

SubValue Class Constructors

Each sub value is represented by a class that is instantiated by a number of sub value constructors that
define its value.

1.5 ErrorBars and other SubValues

SubValue offsets and percent values will be based on the element's yValue.

Constructor Type Description

FromHighLowValue
(highValue,lowValue) Range Creates a range sub value from specified high

and low values.

Chart Types

29 Chart Types

Adding SubValues

Each element contains a SubValueCollection under the Element.SubValues property. Adding a sub value
can be done simply be adding it to that collection.

[C#]
Element e = new Element();
e.SubValues.Add(SubValue.FromOffset(5));

[Visual Basic]
Dim e As new Element()
e.SubValues.Add(SubValue.FromOffset(5))

The element e now contains a subValue which is equivalent to e.YValue + 5.

SubValues Appearance

There are a few options available that determine how a subVlaue will be drawn with an element. These
options are specified with the SubValueType enumeration.

 SubValueType.ErrorBar
A traditional error bar stemming from the top of an element.
NOTE: An idential error bar drawn on top and bottom of the element is achieved when the element
values specify a range (YValue and YValueStart is set).

 SubValueType.Marker
A marker or two markers for range sub values.

 SubValueType.Line
Similar to error bars but without the vertical line.

This code snippet demonstrates how the appearance properties can be used.

FromPlusMinusOffset
(plusOffset,minusOffset) Relative Range Creates a range sub value from specified high

and low offsets.

FromPlusMinusOffset (o) Relative Range
Creates a range sub value from specified offset
above and
blow the element's yValue.

FromPlusMinusPercent
(hPercent,lPercent) Relative Range

Creates a range sub value from specified
percentages above
and below the element's yValue.

FromPlusMinusPercent (percent) Relative Range
Creates a range sub value from the specified
percentage
above and below the element's yValue.

FromOffset(o) Relative Single
Value

Creates a subValue from the specified offset. (-
2) will be
below the element's yValue and (2) will be
above.

FromPercent(p) Relative Single
Value

Creates a subValue from the specified
percentage. (-50)
will be below the element's yValue and (50) will
be above.

FromValue(v) Single Value Creates a subValue from the specified value.

Chart Types

30 Chart Types

[C#]
SubValue sv = SubValue.FromOffset(5);
sv.Type = SubValueType.Marker;
sv.Marker.Type = ElementMarkerType.Circle;
sv.Marker.Color = Color.Red;
SubValue sv2 = SubValue.FromOffset(5);
sv2.Type = SubValueType.Line;
sv2.Line.Color = Color.Black;
sv2.Line.DashStyle = DashStyle.Dash;

[Visual Basic]
Dim sv As SubValue = SubValue.FromOffset(5)
sv.Type = SubValueType.Marker
sv.Marker.Type = ElementMarkerType.Circle
sv.Marker.Color = Color.Red
Dim sv2 As SubValue = SubValue.FromOffset(5)
sv2.Type = SubValueType.Line
sv2.Line.Color = Color.Black
sv2.Line.DashStyle = DashStyle.Dash

Default Settings

SubValues can be quickly added and manipulated for all elements within a series or series collection. When
a SubValue is added to a series' default element it is also added to all subsequent elements automatically.

This code snippet automatically adds a subValue to all elements on the chart.

[C#]
Chart.DefaultSeries.DefaultElement.SubValues.Add(SubValue.FromOffset(5));

[Visual Basic]
Chart.DefaultSeries.DefaultElement.SubValues.Add(SubValue.FromOffset(5))

SubValues default appearance can also be specified quickly by using the element's DefaultSubValue
properties.

[C#]
Chart.DefaultSeries.DefaultElement.DefaultSubValue.Line.DashStyle = DashStyle.Dash;

[Visual Basic]
Chart.DefaultSeries.DefaultElement.DefaultSubValue.Line.DashStyle = DashStyle.Dash

Introduction
The SeriesType.Marker series type draws an element marker for each element. The properties of these
markers can be accessed through Element.Marker.

Limitations

 SubValues are not available with financial series types.

 Not available with stacked scales.

 Time scales don't support error bars.

1.6 Element Markers

Tips:

1. Using Chart.DefaultElement.Marker allows setting all element marker properties simultaneously.

Chart Types

31 Chart Types

Element Markers as Shapes
Element Markers can appear in a number of different shapes specified by the ElementMarkerType
enumeration.

ElementMarkerType

 Square

 Triangle

 TriangleUpsideDown

 Circle

 Diamond

 ArrowUp

 ArrowDown

 FourPointStar

 FivePointStar

 SizPointStar

 SevenPointStar

 Split (Finance Related)

 ReverseSplit (Finance Related)

 Merger (Finance Related)

 Dividend (Finance Related)

 Spinoff (Finance Related)

Element Markers as Images
Element markers can also use custom images loaded from disk instead of the pre-defined shapes.

Using Dynamic Colors with custom images
The DynamicImageColor feature allows colorizing custom marker images to match the colors of elements
they represent. The sections of the image that are colorized are based on a specified DynamicColor.

The Png image format allows variable transparency meaning, a pixel can have a specific color as well as an
alpha part which indicates the pixel's transparency from 0(transparent) to 255(solid). The actual color of a
particular pixel does not have to change along a fade to a transparent color. The dynamic color feature is
capable of maintaining the original transparency of each pixel while replacing it with the element's color,

2. When using some series types like line or spline in 2D mode, markers are automatically drawn. They
can be turned off by setting Chart.DefaultElement.Marker.Visible = false

3. Markers can always be drawn on any series / chart types by specifying Element.ForceMarker = true.

[C#]
myElement.Marker = new ElementMarker("image.png");

[Visual Basic]
myElement.Marker = New ElementMarker("image.png")

[C#]
myElement.Marker.DynamicImageColor = Color.FromArgb(123,123,123);

[Visual Basic]
myElement.Marker.DynamicImageColor = Color.FromArgb(123,123,123)

Chart Types

32 Chart Types

provided the pixel's color matches or closely resembles the specified dynamic color.

DynamicImageColorTolerance

Many times, images don't use solid colors, instead they use antialiasing which blurs hard edges creating a
smoother looking transition. By specifying a tolerance (0-100) the dynamic color will cover a wider range of
colors based around the main dynamic color. At the same time, it will maintain the difference in deviation
from the main color, therefore, the element's color will not be applied to colors within the tolerance range
the same way. The color will vary to replicate the original images variations such as slight highlights.

Custom Circular Gauge Needles
The element marker can also be used with the circular gauge and a custom image to allow custom gauge
needles. The following illustration shows a sample custom needle image and resulting chart.

Element Layout Control

Introduction
This section will describe the following:

 Sizing Columns
How axes influence the element behavior and appearance.

 Clustering Columns
How axes control column and cylinder clustering.

Besides the obvious, an axis can also control how elements drawn on its scale behave. These behavioral
features are determined by the axis that shows element names or x values. For a vertical combo chart this
would mean the x axis and y axis for horizontal combo.

Column and Cylinder Widths

 SpacingPercentage
Gets or sets a percentage (0 - 100) which indicates the spacing between columns, cylinders or groups
thereof.

 StaticColumnWidth
Gets or sets the static bar width in pixels.

Example: This code specifies the column or cylinder widths for a ChartType.Combo chart.

[C#]
Chart.YAxis.GaugeNeedleType = GaugeNeedleType.UseMarker;
Chart.DefaultElement.Marker = new ElementMarker("../../images/needle2.png");
Chart.DefaultElement.Marker.DynamicImageColor = Color.FromArgb(255, 255, 255);

[Visual Basic]
Chart.YAxis.GaugeNeedleType = GaugeNeedleType.UseMarker
Chart.DefaultElement.Marker = New ElementMarker("../../images/needle2.png")
Chart.DefaultElement.Marker.DynamicImageColor = Color.FromArgb(255, 255, 255)
1.7 Element Layout Control

Chart Types

33 Chart Types

[C#]
Chart.XAxis.SpacingPercentage = 30; // Default is 16
// When this property is set, it takes precedence over spacing percentage.
Chart.XAxis.StaticColumnWidth = 20;

[Visual Basic]
Chart.XAxis.SpacingPercentage = 30 ' Default is 16
' When this property is set, it takes precedence over spacing percentage.
Chart.XAxis.StaticColumnWidth = 20

Clustering Columns / Cylinders
This feature enables columns in 3D modes to cluster (draw side by side) or not (draw one in front of the
other). The default behavior is to cluster and column must be clustered in 2D mode.

[C#]
Chart.Use3D = true;
Chart.XAxis.ClusterColumns = false;

[Visual Basic]
Chart.Use3D = True
Chart.XAxis.ClusterColumns = False

Other options include

 Position
The axis positions when 2 or more axes are drawn on the same side of a ChartArea.

 ReverseSeriesPositions
Indicates whether the positions of series bound to this axis are reversed without reversing legend
positions.

 ReverseSeries
Indicates whether the positions of series bound to this axis are reversed.

 ReverseStack
Indicates whether the order of stacked elements is reversed.

Introduction

While there are many options for scales, .netCHARTING can automatically determine the appropriate scales
based on your data. This tutorial will demonstrate how element data influences axis scales.

The Y Axis (value axis)

We will call this the y axis but by 'value axis' we don't literally mean (Y) axis. With
ChartType.ComboHorizontal for instance we would be referring to the x axis. For all others however it is
the y axis. The element values that influence this axis are

 YValue

 YValueStart

 YDateTime

 YDateTimeStart

Tip: The column width control also defines the tool tip hotspot width of area line series types.

1.7.1 Elements And Axis Scales

[New in v5.0]

Chart Types

34 Chart Types

The automatically chosen axis scales here are either Normal or Time. It is determined by whether the
YValue (numeric) or YDateTime (time) values are specified for each element.

The X Axis (Category / Value Axis)

The x axis is very powerful, it can operate just like the y axis value axis as well as a category axis. If the
elements have names (Element.Name) specified, the axis scale will be a category scale. However, if the
elements have either XValue or XDateTime properties set, the appropriate value axis scale will be chosen.

The element properties that influence the x axis type are:

 Name

 XValue

 XValueStart

 XDateTime

 XDateTimeStart

The data engine will always provide elements with both, names and values if the names represent numeric
or time values. By default this creates a category scale. To use a value scale instead, set the axis scale
property to the appropriate scale. Scale.Normal for numeric and Scale.Time for date time values.

Smart Category Axis
A smart category axis scale is one that contains elements with names and values but the names are string
representations of the value properties. The 'smart' part is that despite it being a category (string) axis, the
elements will be sorted in sequence based on the values they represent.
To use this axis type you must use the DataEngine and specify 'XAxis=valueDBColumn' in its DataFields
property.

Z-Axis Effect

Using multiple axes with series can yield some interesting results you may not be aware of. We'll explore a
situation that simulates a z axis. A basic z axis can be simulated by setting the x axis ClusterColumns
property to false:

The elements of a series can be excluded from the axis scale range using Series.ExcludeFromAxisRange
= true

The following table shows value settings of these element properties that the chart engine will
consider not set.

 YValue & YValueStart
Setting: double.NaN

 YDateTime & YDateTimeStart
Setting: DateTime.MinValue

Y Axis using ChartType.ComboHorizontal

Even if all numeric or time values are provided, setting any of the element's Name properties will
yield a category axis scale and values will become names for elements without specified names.

Setting the scale through DefaultAxis.Scale will not produce the same result.

[C#]
Chart.XAxis.Scale = Scale.Time;

[Visual Basic]
Chart.XAxis.Scale = Scale.Time

1.7.2 Element Layout Control Advanced

Chart Types

35 Chart Types

[C#]
Chart.XAxis.ClusterColumns = false;

[Visual Basic]
Chart.XAxis.ClusterColumns = false

This may show a chart that looks like this:

Using X Axes

This works well however if we wanted a z axis with two steps and two clustered series on each step we will
have to use two X axes. This time we will also omit setting the cluster columns property to false.

[C#]
Axis a2 = new Axis();
mySC[0].XAxis = a2;
mySC[1].XAxis = a2;
a2.Clear();

[Visual Basic]
Dim a2 As New Axis()
mySC(0).XAxis = a2
mySC(1).XAxis = a2
a2.Clear()

Gantt chart tip:

The CluseterColumns feature is only available when Chart.Use3D = true, however, it is still possible to
use this feature in 2D by using 3D but emulating a 2D chart by setting the Chart.Depth property to
zero. This trick may be most useful when creating Gantt charts which require element columns from
different series (but using the same element names) to occupy the same horizontal space (with
vertical 'Combo') or vertical space with ComboHorizontal charts.

We "Clear()" the second axis so that only the original one is visible.

Tip: This method also allows overlapping columns
in 2D mode which is useful in Gantt charts:

Chart Types

36 Chart Types

Using Y Axes
Y axes will typically not affect the z axis. For example using the following code where we give two of the
four series a new y axis and set the scale to stacked:
[C#]

Axis a2 = new Axis();
mySC[0].YAxis = a2;
mySC[1].YAxis = a2;
a2.Scale = Scale.Stacked;
[Visual Basic]

Dim a2 As New Axis()
mySC(0).YAxis = a2
mySC(1).YAxis = a2
a2.Scale = Scale.Stacked
Will yield this result:

Notice that the new y axis is stacked but still the main x axis manages the clustered - unclustered layout.
Therefore if we wanted to uncluster the columns we could have multiple z axis steps and some may be
stacked while other wont.

[C#]
Chart.XAxis.ClusterColumns = false;

[Visual Basic]
Chart.XAxis.ClusterColumns = false

Please note that using multiple value axes while hiding one of them may result in one going out of
sync with the other. This will result in the bars indicating incorrect values (according to the visible
value axis). This issue can be resolved by synchronizing the visible with the invisible axes.

For more information see the scale synchronization (on-line documentation) tutorial.

Sample: AxisDualScales.aspx

Chart Types

37 Chart Types

Chart Types

38 Chart Types

Chart Type Anatomy 101, 1-14

Element Layout Control, 33-34

Element Layout Control Advanced, 35-38

Element Markers, 31-33

Elements And Axis Scales, 34-35

ErrorBars and other SubValues, 29-31

Financial Charts, 28-29

Gauge Types, 14-18

Micro Charts, 18-23

Organizational Charts, 23-28

Tutorials

Chart Type Anatomy 101, 1-14

Element Layout Control, 33-34

Element Layout Control Advanced, 35-38

Element Markers, 31-33

Elements And Axis Scales, 34-35

ErrorBars and other SubValues, 29-31

Financial Charts, 28-29

Gauge Types, 14-18

Micro Charts, 18-23

Organizational Charts, 23-28

Index

Chart Types

39 Chart Types

	Chart Type Anatomy 101
	Gauge Types
	Micro Charts
	Organizational Charts
	Financial Charts
	ErrorBars and other SubValues
	Element Markers
	Element Layout Control
	Elements And Axis Scales
	Element Layout Control Advanced

