

Mapping

Mapping |

Table of Contents

1. Mapping API 1

2. Mapping Data and Layers 2-3

3. Map Styling 4-5

4. Mapping Rendering 6

5. Map Interactivity 7

Mapping |

Mapping API

The supporting mapping API contains a number of classes and can be found under the
dotnetCHARTING.Mapping namespace. The chart object contains the property: 'Chart.Mapping' which
exposes all the chart mapping properties necessary to create maps.

The map layers and shapes are laid out in a manner similar to the chart series and element objects. This
table demonstrates the relationships.

Map Layer

The MapLayer object represents a shape file or ecw file and includes data retrieved from those files. Any
number of layers can be added to a chart at a time. The object also exposes a number of properties to
allow styling manipulation for shapes within a shape file.

The MapLayer provides a DefaultShape property which holds the default settings that will be applied to
all shapes within the map layer.

1 Mapping API

Mapping Charting
MapLayerCollection SeriesCollection
MapLayer Series
Shape Element

See Sample Mapping/IteratingShapes.aspx.

Mapping | 1

MapDataEngine object

The MapDataEngine class exposes methods that populate MapLayer objects with data and map
information retrieved from shape or ecw files. The following code snippet demonstrates simple usage of
this engine loading the states.shp shapefile into a map layer:
[C#]
MapLayer myLayer = MapDataEngine.LoadLayer("states.shp");

[Visual Basic]
MapLayer myLayer = MapDataEngine.LoadLayer("states.shp")

The myLayer object now contains visual and statistical data about each US state. These states are
represented as Shape objects. Each shape has a number of attributes that contain the statistical data.
This data is stored as key value pairs and the keys for the shape attributes are stored under the string
array myLayer.AttributeNames.

Importing database data

One of the above mentioned attribute keys is 'State_Abbr' which represents the state abbreviation.
Consider we also have a database containing additional information about these states that we want to
use on the map. A column named 'state' in this database contains the same state abbreviations. This will
allow matching the map shapes with this data. The first step is to get a DataTable containing the state
column along with any other data columns to bind with the map. Next, the mapLayer will be bound with
this table.
[C#]
myLayer.ImportData(myDataTable,"State_Abbr","state");

[Visual Basic]
myLayer.ImportData(myDataTable,"State_Abbr","state")

The parameters are the DataTable, the shape attribute and the matching DataTable column name to
match. All other columns in the DataTable will be added to the map layer and shapes as additional
attributes.

Add layers to a map

Adding a layer to the map can be done easily with the following code:
[C#]
Chart.Mapping.MapLayerCollection.Add(myLayer);

[Visual Basic]
Chart.Mapping.MapLayerCollection.Add(myLayer)

Add Points Manually

Shape layers use a single type of shape such as polygons or points. Therefore, a new map layer must be
created with points to add to a map. A point can be added based on a Lat/Long GPS coordinate or
reversed in the form of Long/Lat as shown below:

[C#]
MapLayer ml = new MapLayer();
ml.AddPoint(50,100);
Chart.Mapping.MapLayerCollection.Add(ml);

[Visual Basic]
Dim ml AS new MapLayer()
ml.AddPoint(50,100)

2 Mapping Data and Layers

Sample Mapping/IteratingShapes.aspx styles a number of shapes based on the value of the country
code attribute.

Sample Mapping/ImportShapefileData.aspx imports additional information about states from an
access database to be used with the map layer.

Mapping | 2

Chart.Mapping.MapLayerCollection.Add(ml)

Add Lines manually

Again, a new map layer is required to add lines to a map. Lines can be added using Lat/Long GPS
coordinates or reversed in the form of Long/Lat. A line object can be specified in the AddLine parameters
to specify the styling when drawn. Line caps are also supported.

Sample: AddMapPoint.aspx

Sample: MapAddLine.aspx

Mapping | 3

Shapes Styling

The Shape object exposes a Background, Line, ElementMarker, and Label object which determines
the shape's appearance. These objects can be manipulated individually for each shape or they can be set
simultaneously for all objects through defaults.

The Chart.Mapping object as well as the MapLayer object contain a DefaultShape property which works
the same as a normal DefaultSeries or DefaultElement in a regular chart.

Thematic Mapping

Thematic mapping is a feature by which a color is applied to shapes conditionally. This feature uses the
SmartColor object. The following sample demonstrates using a smart colors to shade US states based on
population ranges.
[C#]
Chart.SmartPalette = SmartPalette sp = new SmartPalette();
Color[] cols = new Color[]{Color.FromArgb(2,255,0),Color.FromArgb(186,253,0)};
sp.Add("POPULATION",new SmartColor(cols[0], new ScaleRange(100000,1000000)));
sp.Add("POPULATION",new SmartColor(cols[1], new ScaleRange(1000000,10000000)));

[Visual Basic]
Dim sp As New SmartPalette()
Chart.SmartPalette = sp
Dim cols() As Color = {Color.FromArgb(2, 255, 0), Color.FromArgb(186, 253, 0)}
sp.Add("POPULATION", New SmartColor(cols(0), New ScaleRange(100000, 1000000)))
sp.Add("POPULATION", New SmartColor(cols(1), New ScaleRange(1000000, 10000000)))

Labels

Similar to labels on normal chart elements, shape labels can contain tokens which represent the data
attributes they contain. For instance, the shapes from the above example contain an attribute named
'State_Abbr' which represents the state's abbreviation. If the shape label text contains '%State_Abbr' the
resulting label on the map will show the value of this attribute, depending on which state the label could
be something like "IL", or "CA". This code snippet sets this label text for all the states within myLayer.
[C#]
myLayer.DefaultShape.Label.Text = "%State_Abbr";

[Visual Basic]
myLayer.DefaultShape.Label.Text = "%State_Abbr"

Additional data imported from other databases (See: Mapping Data and Layers (Section 2)) can also
be represented in these labels.

LabelOnce Option [New in v5.0]

In cases where a single shape has multiple polygon parts representing islands for example, the control
tends to place the shape's label on each polygon of the shape. Using this option will ensure only one label
is used for the collection of polygons belonging to the shape.

Shape Groups

3 Map Styling

See sample Mapping/ShapeStyling.aspx

For more information on smart colors see this tutorial ('Element Colors & Palettes' in the on-line
documentation).

See sample Mapping/ImportShapefileData.aspx

[C#]
mapLayer.LabelOnce = true;

[Visual Basic]
mapLayer.LabelOnce = True

Sample: MapLabelOnce.aspx

Mapping | 4

Shape files often contain a large number of shapes which may be difficult to differentiate between and
label. The Group object solves this by conditionally encapsulating a number of shapes. This allows
settings to simultaneously be applied to all shapes within that group. A DefaultShape property is
provided by this Group object to facilitate this feature.

The conditions that determine whether a shape belongs to a group are based on the data attributes of
those shapes. For example a condition may be that only shapes with a 'population' attribute greater than
50,000 are included. The following code snippet demonstrates this example.
[C#]
MapLayer layer = MapDataEngine.LoadLayer(@"mapFiles/canada.shp");
dotnetCHARTING.Mapping.Group gr = new dotnetCHARTING.Mapping.Group("CNTRY_NAME", "Canada");
gr.DefaultShape.Background.Color = Color.Green;
layer.Groups.Add(gr);
Chart.Mapping.MapLayerCollection.Add(layer);

[Visual Basic]
Dim layer As MapLayer = MapDataEngine.LoadLayer("mapFiles/canada.shp")
Dim gr As New dotnetCHARTING.Mapping.Group("CNTRY_NAME", "Canada")
gr.DefaultShape.Background.Color = Color.Green
layer.Groups.Add(gr)
Chart.Mapping.MapLayerCollection.Add(layer)

Group Labels

While the styling properties of the default shape are inherited by all the shapes within the group. The
Group.Label property is drawn only once on top of the entire group. Tokens are not allowed in this label's
text.
[C#]
MapLayer layer = MapDataEngine.LoadLayer(@"mapFiles/canada.shp");
dotnetCHARTING.Mapping.Group gr = new dotnetCHARTING.Mapping.Group("CNTRY_NAME", "Canada");
gr.Label = new dotnetCHARTING.Label("Canada",new Font("Arial",25,FontStyle.Bold),Color.FromArgb(200,20,20),Color.White);
layer.Groups.Add(gr);
Chart.Mapping.MapLayerCollection.Add(layer);

[Visual Basic]
Dim layer As MapLayer = MapDataEngine.LoadLayer("mapFiles/canada.shp")
Dim gr As New dotnetCHARTING.Mapping.Group("CNTRY_NAME", "Canada")
gr.Label = New dotnetCHARTING.Label("Canada", New Font("Arial", 25, FontStyle.Bold), Color.FromArgb(200, 20, 20), Color.White)
layer.Groups.Add(gr)
Chart.Mapping.MapLayerCollection.Add(layer)

See sample Mapping/ShapeGrouping.aspx

See sample Mapping/ShapeGrouping.aspx

Mapping | 5

Rendering

Projections

Projections were created to emulate the surface of the earth on a flat surface such as a monitor.
.netCHARTING provides two types of projections; The Lambert Conic, and the Mercator projection.

The following code snippet demonstrates using the Lambert Conic Projection:
[C#]
Chart.Mapping.Projection.Type = ProjectionType.LambertConic;
Chart.Mapping.Projection.Parameters = "-10,-20,-32,49";

[Visual Basic]
Chart.Mapping.Projection.Type = ProjectionType.LambertConic
Chart.Mapping.Projection.Parameters = "-10,-20,-32,49"

Projections and Performance

Projecting ecw files is a CPU intensive operation. To remedy this feature in a real time rendering
environment, the projected ecw views can be cached as jpeg images. This works by simply providing the
path and name of a jpeg file where the cached image can be stored as shown in the following code
snippet.:
[C#]
MapLayer myLayer = MapDataEngine.LoadLayer("earth.ecw","earth_ecw.jpg);

[Visual Basic]
MapLayer myLayer = MapDataEngine.LoadLayer("earth.ecw","earth_ecw.jpg)

Zooming

A simple API is provided to facilitate zooming. The feature consists of a ZoomPercentage and
ZoomCenterPoint properties.

Since shape and ecw files are generally based on the Longitude/Latitude coordinate system, choosing a
center point of your zoom can be easily accomplished by finding the GPS coordinates of the particular
location. This code snippet demonstrates a simple zoom:
[C#]
 // Zoom 2250% into the coordinates for chicago.
 Chart.Mapping.ZoomPercentage = 2250;
Chart.Mapping.ZoomCenterPoint = new PointF(41.9f,-87.65f);

[Visual Basic]
 ' Zoom 2250% into the coordinates for chicago.
Chart.Mapping.ZoomPercentage = 2250
Chart.Mapping.ZoomCenterPoint = New PointF(41.9F, -87.65F)

The following table shows how GPS coordinates are represented in .netCHARTING:

4 Mapping Rendering

See samples:

 Mapping/Projections.aspx

GPS .netCHARTING
Latitude Longitude: 41°54' N 87°39' W new PointF(41.54f, -87.39f)
Latitude Longitude: 34° 56' S 138° 35' E new PointF(-34.56f, 138.35f)

See sample Mapping/MapZooming.aspx

Mapping | 6

The mapping functionality offers some unique features to enable interactivity.

Shape Hotspots

Shapes have a Hotspot property which allows mouseover tooltips and other interactive functionality. For
more information see hotspots tutorial ('Hotspots' in the on-line documentation).

The most useful application of this is to set DefaultShape's hotspot properties as shown in this sample.

Click to GPS (Lat/Long) coordinates

This feature allows a pixel coordinate on the map to be translated into GPS coordinates of the point based
on the map. By capturing a user's click coordinate this information can be translated into GPS coordinates
to provide zooming on the map or using the GPS position to query information from other services.

[C#]
Chart.FileManager.SaveImage();
PointF gpsPoint = Chart.Mapping.GetLatLongCoordinates("50,100");

[Visual Basic]
Chart.FileManager.SaveImage()
Dim gpsPoint AS Chart.Mapping.GetLatLongCoordinates("50,100")

This feature also works with projections applied to the map.

Click to Shapes array

From the click pixel position an array of Shape objects that land under the coordinate can be acquired.
This can be used to select specific shapes and display its details or modify any of its properties.
[C#]
Chart.FileManager.SaveImage();
ArrayList shapes =
Chart.Mapping.GetShapesAtPoint("50,100);

[Visual Basic]
Chart.FileManager.SaveImage()
Dim shapes AS
Chart.Mapping.GetShapesAtPoint("50,100)

Ajax Zoomer

The ajax zoomer feature also supports mapping. This will allow the user to interactively zoom and scroll
maps on demand.

5 Map Interactivity

Sample: MapHotspots.aspx

Samples:
ClickMap.aspx
ClickMapProjected.aspx
ClickMapZoom.aspx

Sample:
IdentifyShape.aspx

Note: The reason the SaveImage method is called is because the chart must be generated to have the
information necessary to process these requests.

Mapping | 7

	Mapping API
	Mapping Data and Layers
	Map Styling
	Mapping Rendering
	Map Interactivity

