Fits a polynomial of a given degree to a data set in accordance with the least squares approach and returns the value of the fitted function over an extended (i.e. above, below or both) range of the x-coordinate values of the given data set.
[Visual Basic]
Overloads Public Shared Function TrendLinePolynomial( _
ByVal s As Series, _
ByVal degree As Integer , _
ByVal step As Double , _
ByVal forward As Integer , _
ByVal backward As Integer _
) As Series
[C#]
public static Series TrendLinePolynomial(
Series s,
int degree,
double step,
int forward,
int backward
);
A series where the k-th element of the array represents of k-th point (i.e. { x_k, y_k }) of the total set over which the fitted function is evaluated. The total set over which the fitted function is evaluated consists of the `backward' points, original data set points and the `forward' points.
Remark: This methods corresponds in functionality to the method of the same name within Microsoft Excel.
For example, if we fit a polynomial of degree 2, then we fit the quadratic polynomial (i.e. f(x) = a_0 + a_1 x + a_2 x^2); similarly if we fit a polynomial of degree 3, then we fit the cubic polynomial (i.e. f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3).
Remark: The difference between this method and TrendLinePolynomial, is that it allows the values of the fitted function to be evaluated over an extended range. That is, a range in the x-coordinate greater than the original given data set.
The parameters step
, forward
, backward
allows the position
and number of additional points above and/or below the range of the values in the
x-coordinate of the original data set to be given. The forward
parameter specifies
the number of the additional evaluation points of the fitted function which are greater
than the values of the x-coordinates of the original data set. Similarly, the
backward
parameter specifies the number of the additional evaluation points of the
fitted function which are lower than the values of the x-coordinates of the original
data set. The step
specifies the distance in the x-coordinate between each of the
additional data points, where the first additional data point either above or below is
exactly a distance of step
from the points of the original data set
which the highest and lowest values in the x-coordinate.
For example, consider the data set x = 1, 2, 3
; y = 1, 2, 3
. Now if
step = 1
, forward = 2
, and backward = 3
, then this method when applied
will return a two dimensional array. This two dimensional array will have the following
structure: { { -2, f(-2) } { -1, f(-1) } { 0, f(0) }{ 1, 1 } { 2, 2 }{ 3, 3 } { 4, f(4) } { 5, f(5) } }
,
where f(-2), f(-1), f(0), f(4), f(5)
correspond to the value of the fitted functions at the
points x = -2, -1, 0, 4, 5
, respectively.
ForecastEngine Class | ForecastEngine Members | Overload List
2002 - 2005 Webavail Productions Inc. & Corporate Web Solutions Ltd.. All Rights Reserved.